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Abstract We compare four different types of equations of
motion for reduced density matrix of a system of molecular
excitons interacting with thermodynamic bath. All four
equations are of second order in the linear system-bath
interaction Hamiltonian, with different approximations
applied in their derivation. In particular we compare time-
nonlocal equations obtained from so-called Nakajima-
Zwanzig identity and the time-local equations resulting
from the partial ordering prescription of the cummulant
expansion. In each of these equations we alternatively
apply secular approximation to decouple population and
coherence dynamics from each other. We focus on the
dynamics of intraband electronic coherences of the exci-
tonic system which can be traced by coherent two-
dimensional spectroscopy. We discuss the applicability of
the four relaxation theories to simulations of population and
coherence dynamics, and identify features of the two-
dimensional coherent spectrum that allow us to distinguish
time-nonlocal effects.
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Introduction

Modeling molecular properties related to their non-
equilibrium dynamics requires various theoretical
approaches depending on the particular microscopic pro-
cesses related to the observed molecular features. Since the
dawn of quantum mechanics, properties of molecules and
solids have been studied theoretically in ever greater detail.
This has led in recent years to a state in which dynamics of
complex systems with multitudes of degrees of freedom
(DOF) are accessible to quantitative theoretical study [1].
Many properties of molecular systems are directly related to
the equilibrium or time dependent conformations of nuclear
DOF for which electronic states play the role of a
background contributing to the nuclear potential energy
surfaces. Problems like these are the realm of molecular
dynamics (MD) in its classical, quantum or mixed versions
and quantum chemistry (QC), where impressive qualitative
and quantitative results have been achieved in recent years.
For certain types of dynamical problems, however, less
expensive model approaches are the preferred choice due to
the scale of studied system or due to the physical nature of
studied processes. A good example of such a problem is
ultrafast photo-induced excited state dynamics of small
molecular systems and their aggregates [2]. Here, most of
the relevant experimental information is only available
through ultrafast non-linear spectroscopy, and thus the theory
has to span the whole distance between the microscopic
dynamics of the molecular system, and the macroscopic
description of experimental signals [3]. Typical field in
which such an approach has yielded deep understanding of
the relevant physico-chemical processes is the study of
primary processes in photosynthesis. The related quantum
mechanical problem is usually formulated in terms of a
model describing the relevant DOF of the system
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(electronic states of photosynthetic molecules), and a
thermodynamics bath (the protein environment). Parame-
ters for such models can be supplied by experiment [4],
QC studies [5, 6], MD modeling [7], or are a result of
suitable simplified models [3].

Recent advances in non-linear spectroscopy have opened
a wide new experimental window into the details of
ultrafast photo-induced dynamics of molecular systems.
Experimental realization of two-dimensional (2D) coherent
spectroscopy in the visible and near IR regions [8–11] has
enabled to overcome some of the frequency- vs. time-
resolution competition problems otherwise faced by ultra-
fast spectroscopy, and yielded thus unprecedented experi-
mental details of the time evolution of molecular
excitations. Most importantly, it was predicted that the
presence of certain oscillatory features in 2D spectra is a
manifestation of coherences between molecular excited
states [12, 13]. It was also concluded that these oscillations
should be present in the 2D spectrum of photosynthetic
Fenna-Matthews-Olson (FMO) chromophore-protein com-
plex [12]. Experimental results not only confirmed this
prediction [14], but yielded also surprising results such as
unexpectedly long life time of these coherences, as
compared to the predictions of standard dephasing rate
theory. Furthermore, while possible coherence transfer
between the pairs of electronic levels was ignored by the
relaxation theory used in Ref. [12], the experiment provided
some evidence for its role in excitation energy transfer. It
was speculated that photosynthetic systems might use the
coherent mode of energy transfer to more efficiently
channel excitation energy by scanning their energetic
landscape in a process similar to quantum computing [14].
More experiments have recently reported coherent dynam-
ics in photosynthetic systems [15] and conjugated polymers
[16], and the field of energy transfer in photosynthesis has
seen an increased interest from theoretical researchers from
previously unrelated fields [17–20].

Theoretical basis for the description of the decoherence
phenomena in excitation energy transfer has been devel-
oped long ago in the framework of the reduced density
matrix (RDM) [21, 22]. Equations of motion (EM) resulting
from this scheme are characterized by the presence of time
retarded terms responsible for energy relaxation and
decoherence processes. Equations of this type will be
denoted as time non-local in this paper. Later, an alternative
approach to the derivation of the EM for the RDM has
emerged which yields time local equation of motion [23,
24]. Both theories express the relaxation term in the form of
an infinite series in terms of the system-bath interaction
Hamiltonian, but differ in time ordering prescriptions for
the cumulant expansion of the evolution operator. The time
local equations correspond to so-called partial time ordering
prescription of the cummulant expansion, while the time

non-local equations result from so-called chronological
time ordering [25, 26]. Although the two schemes yield
formally different EM for the RDM, they are in fact
equivalent as long as the complete summation of the
corresponding infinite series is performed. When the
infinite series are truncated at a finite order, the two
theories yield equations that predict different RDM dynamics.
This is a result of different statistical assumptions about the
bath that are implicitly made in the two cases [25, 26]. In all
orders of expansion, so-called Markov approximation can be
used to transform the time non-local equation of motion into
a certain time-local form. This has to be regarded as an
additional approximation which simplifies the numerical
treatment of the time non-local equations. Interestingly, in
the second order the time-local equations and the time non-
local equations with Markov approximation have exactly the
same form.

Until recently, most experiments were not sensitive to
coherence between electronic levels. This allowed a host of
further approximations to simplify EM. Most notably, the
secular approximation, which amounts to decoupling RDM
elements oscillating on different frequencies from each
other, has limited the energy transfer phenomena to separate
dynamics of population transfer and coherence dephasing
[27]. Even on a very short time scale, experiments aimed at
studying population dynamics (pump probe) are not
sensitive enough to coherence between electronic levels to
require non-secular theory for their description. It was
however suggested that measured relaxation time can be
distorted by non-secular effects [28]. Consequently, most of
the theory developed for evaluation of experiments has
been aimed at improving calculation of the population
relaxation rates [29–31]. With experiments now uncovering
new details about the role of electronic coherence,
theoretical methods beyond rate equations for probabilities
which are both accurate and numerically tractable are
required. Although schemes for constructing EM for the
RDM beyond second order, based on co-propagation of the
RDM with auxiliary operators, seem feasible and promising
[32, 33], second order theories might still be the only option
for treatment of extended molecular systems. It was
suggested previously that second order perturbation theory
with respect to system-bath coupling provides a suitable
framework for development of such methods [34]. This
notion is also supported by the fact that in the special case
of so-called spin-boson model, second order time-local
equation of motion already represents an exact equation of
motion for the RDM [35]. Recently, non-secular Lindblad
rate equations which are valid for arbitrarily strong system-
bath coupling were parametrized by secular time local
second order (Redfield) rate theory [36]. Such approach
seems to reproduce effects observed in the experiment of
Ref. [14]. However, due to the time-scale of the experi-
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ment, constant rate equations might not be appropriate for
the description of the short time dynamics. Consequently,
we concentrate exclusively on theories with time dependent
relaxation rates, here.

In this paper we study the following four different
second order theories: (a) full time non-local (full TNL)
equation of motion resulting from the Nakajima-Zwanzig
identity or equivalently from the chronological ordering
prescription in the cummulant expansion, (b) the full time
local (full TL) equation of motion resulting from the partial
ordering prescription in the cummulant expansion, or
equivalently from Markov approximation applied to TNL
equation, (c) time non-local equation with secular approx-
imation (secular TNL), and (d) time local equation with
secular approximation (secular TL). We discuss the appli-
cability of these equations to the description of the energy
relaxation and decoherence dynamics in small systems of
molecular excitons with the emphasis on recent 2D
spectroscopic experiments and the dynamics of coherence
between electronic excited states. Note that, in this paper,
full refers to the equations where no secular approximation
has been applied. These equations are still of second order
perturbation theory in the system-bath coupling.

The paper is organized as follows. The next section
introduces Hamiltonian description of an aggregate of small
molecules embedded in a protein or solid state environment.
In ‘Second order relaxation theories section’ we describe the
details of four different EM for the RDM describing
electronic states of a molecular aggregate. Two-dimensional
coherent spectroscopy, and non-linear spectroscopy in
general are introduced in ‘Non-linear spectroscopic signals
section’. In ‘Numerical results and discussion section’ we
present and discuss numerical results comparing different
theories of relaxation on calculations of coherence life time
and 2D spectra.

Model Hamiltonian

The investigated molecular system is an aggregate com-
posed of N monomers embedded in protein environment.
Let us first consider a monomeric molecule (a chromo-
phore) embedded in the environment, but insulated from
interaction with its neighboring monomers. The monomer
Hamiltonian has a form

Hm ¼ "ðmÞg þ T Pmð Þ þ V ðmÞ
g Qmð Þ

� �
gmj i gmh j

þ "ðmÞe þ T Pmð Þ þ V ðmÞ
e Qmð Þ

� �
emj i emh j; ð1Þ

where, gmj i, emj i denote electronic ground and excited
states, and "

ðmÞ
g , "ðmÞg represent electronic energies of these

states. The kinetic term T (Pm) and the potential terms

V ðmÞ
g ðQmÞ; V ðmÞ

e ðQmÞ represent the intra-molecular DOF
and the protein environment (bath or reservoir) interacting
with these states. By Qm (Pm) we denote the (possibly
macroscopic) set of coordinates (impulses) describing both
the intramolecular nuclear DOF of the mth monomer as
well as the DOF of its surroundings. The total Hamiltonian
of the monomer can be split into the system, reservoir and
the system-reservoir coupling terms

Hm
S � "ðmÞg gmj i gmh j þ "ðmÞe þ V ðmÞ

e ðQmÞ � V ðmÞ
g ðQmÞ

D E
eq

� �

� emj i emh j;
ð2Þ

Hm
R � TðPmÞ þ V ðmÞ

g ðQmÞ
h i

� gmj i gmh j þ emj i emh jð Þ

¼ TðPmÞ þ V ðmÞ
g ðQmÞ

h i
� b1; ð3Þ

Hm
S�R � V ðmÞ

e ðQmÞ � V ðmÞ
g ðQmÞ � V ðmÞ

e ðQmÞ � V ðmÞ
g ðQmÞ

D E
eq

� �

� emj i emh j � ΔΦmðQmÞ emj i emh j:
ð4Þ

Here, AðQÞh ieq represents averaging of an arbitrary Q–
dependent operator over equilibrium state of the bath. By
this choice of the splitting we have assured that
ΔΦðmÞðQmÞ ¼ 0 for the system in equilibrium. To simplify
the notation, we redefine electronic energy of the excited
state to include the equilibrium average of the potential
energy difference between the electronic excited and
ground states, e"ðmÞe ¼ "

ðmÞ
e þ V ðmÞ

e ðQmÞ � V ðmÞ
g ðQmÞ

D E
eq

and we drop the tilde over "ðmÞe further on in this paper.
An aggregate built out of these monomers can be

represented on a Hilbert space composed of collective
aggregate states. We define the aggregate ground state

gj i ¼
YN
m¼1

� gmj i; ð5Þ

states with a single excitation

unj i ¼
Yn�1

m¼1

� gmj i � enj i
YN

m0¼nþ1

� gm0j i; ð6Þ

and multi-excited states in an analogical manner. We drop
the sign ⊗ in further consideration for the sake of brevity.
The Hamiltonian of the aggregate is constructed using the
energies of collective states

Hnon�int
S ¼ "g gj i gh j þ

X
n

ðΔ"n þΩÞ unj i unh j þ h: e: t:; ð7Þ

where "g ¼
P

n "
ðnÞ
g ; Ω ¼ N�1 P

n "
ðnÞ
e , and Δ"n ¼

"
ðnÞ
e �Ω þ

P
m6¼n "

ðmÞ
g . The abreviation h. e. t. denotes

higher excitonic terms. Due to the fact that the monomers
are positioned in a tight aggregate, we have to account for
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the interaction energy between their excited states. The
interaction energy between states umj i and unj i will be
denoted Jmn, and the corresponding contribution to the total
Hamiltonian reads

Hint
S ¼

X
n6¼m

ðJnm unj i umh j þ c:c:Þ þ h: e: t:: ð8Þ

Due to the off-diagonal terms Jmn the collective states
defined in Eq. 6 are not eigenstates of the total Hamiltonian
HS ¼ Hnon�int

S þ Hint
S . Although the basis of the states gj i,

unj i and multiple-excitation states of the aggregate provides
efficient means for defining the Hamiltonian, it is more
practical to switch into the basis of eigenstates of the
Hamiltonia HS. One of the reasons is that while matter
interacts with light, the differences between eigenenergies of
HS define the resonant transition frequencies. The system–
bath coupling part of the aggregate Hamiltonian reads

HS�B ¼
X
n

ΔΦn unj i unh j þ h: e: t:; ð9Þ

and thus no terms in the total Hamiltonian couple the ground
state with the first excited state or higher excited state bands.
In fact, the total Hamiltonian splits into blocks separated
approximately by the energy ħΩ (see Fig. 1). This reflects
the neglecting of all adiabatic couplings, which are supposed
to be so weak that they do not lead to transitions on the time
scale of interest (femto and picoseconds). This property is
well justified, e.g., for chlorophyll systems.

For subsequent use in this paper, we denote the eigenstates of
the total electronic Hamiltonian HS by uaj i, a=1, ..., N, for
single exciton states formed as linear combinations of single
excitation states unj i and Ua

�� �
, a ¼ N þ 1, ..., N + N (N−1)/2,

for two-exciton states formed from the linear combination of
pairs of single excitation states.

Second order relaxation theories

In this section we consider interaction of the electronic
system described by the Hamiltonian HS with a macro-
scopic bath composed of the DOF of the molecular
surroundings. Standard approach to such a problem is to
derive EM for reduced density operator

rðtÞ ¼ trBW ðtÞ; ð10Þ

where trB is a trace over the bath DOF and W(t) is the total
density operator. The derivation is conveniently achieved
via projection operator technique [27, 37]. Two general
schemes exist. First, so called Nakajima-Zwanzig identity
leads to integro-differential, i.e., time-non-local master
equation for the RDM with a convolution memory term.
Alternatively, a different projector operator identity can be

used to derive EM which is time-local, leading to so-called
convolutionless master equation [37]. Interested reader can
refer to Refs. [25, 26, 37] for details of the derivations and
comparison of the two schemes. Below, we will use specific
second order approximation to the general equations.

System-bath coupling

We will now assume the interaction Hamiltonian in a form
of Eq. 9 where index n now runs through all relevant
single-exciton and multi-exciton states

HI ¼
X
n

ΔΦnKn: ð11Þ

Correspondingly, Kn ¼ unj i unh j for single excitonic
states. the system-bath interaction contribution can be
conveniently expressed via so-called bath (or energy gap)
correlation functions defined as

CmnðtÞ ¼ trQfUBð�tÞΔΦmUBðtÞΔΦnweqg: ð12Þ

Fig. 1 Illustration of the level structure of an excitonic system. The
excited states enj i of N monomers with transition frequency Ω (left
part of the figure) split due to the resonance interaction into N one
exciton states |ūni (right). Absorption spectra of ensembles of
noninteracting (left) and interaction (right) monomers. The system
also exhibits higher excitons states (two-exciton states |Ūni are
depicted here), with Ω being the mean transition frequency from the
one- to two-exciton bands. A pictorial 2D spectrum with peaks
resulting from transitions between the ground- and one-exciton states
(red arrows) and one- and two-exciton states (blue arrows) is
presented in the upper left corner of the figure. The transitions
between the ground- and one-excitons states lead to positive
contributions to the 2D spectrum (absorption and ground state bleach),
while the transitions between the one- and two-exciton states result in
a negative contribution (excited state absorption)
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Here, we have chosen a specific form of the bath density
matrix w≡weq, where weq is the equilibrium density matrix
of the bath DOF. Defining also an operator

ΛmðtÞ ¼
X
n

CmnðtÞUSðtÞKnU
y
S ðtÞ ð13Þ

and a superoperator M 2ð ÞðtÞ such that

Mð2ÞðtÞA ¼
X
m

½Km;ΛmðtÞUSðtÞAUSð�tÞ

�USðtÞAUSð�tÞΛymðtÞ� ;

ð14Þ

the EM for the RDM can be rewritten either in a time local
form as

@

@t
rðtÞ ¼ �iLSrðtÞ

�
X
m

Zt�t0

0

dt Km;ΛmðtÞrðtÞ � rðtÞΛymðtÞ
h i

ð15Þ

or in a time non-local form as

@
@t rðtÞ ¼ �iLSrðtÞ

�
P
m

Rt�t0

0
dt Km;ΛmðtÞUSðtÞrðt � tÞUSð�tÞ � USðtÞrðt � tÞUSð�tÞΛymðtÞ
h i

:
ð16Þ

It is important to note that the two equations and their
solutions differ. They are differnt second order approxima-
tions to the exact equation of motion for the RDM.

Provided we can supply a model for the correlation
function Cmn(τ) we are in position to write down the EM
for RDM in terms of known quantities. The last step
necessary to implement these equations is to represent them
in the basis of the eigenstates of the aggregate Hamiltonian.
We define

rabðtÞ ¼ ua rðtÞj jubh i; a; b ¼ 1; . . . ;N ; ð17Þ

rabðtÞ ¼ Ua rðtÞj jUb

� �
;

a; b ¼ N þ 1; . . . ;N þ NðN � 1Þ=2;

ð18Þ

and in a similar manner for matrix elements of other
operators and superoperators. This leads to

@

@t
rabðtÞ ¼ �iwabrabðtÞ �

X
cd

RabcdðtÞrcdðtÞ; ð19Þ

with Rabcd tð Þ being the matrix elements of the super-
operator defined by the r. h. s. of Eq. 15, and

@

@t
rabðtÞ ¼ �iwabrabðtÞ

�
X
cd

Zt�t0

0

MabcdðtÞrcdðt � tÞ; ð20Þ

with Mabcd tð Þ the matrix elements of the superoperator
defined by the r. h. s. of Eq. 16. All the quantities needed to
calculate the matrix elements RabcdðtÞ and MabcdðtÞ are
known provided the energy gap correlation function is
known.

Energy gap correlation function

As a suitable model of the energy gap correlation function
we choose so-called multimode Brownian oscillator (BO)
[3]. In general, the Brownian oscillator model can interpo-
late between underdamped intra-molecular DOF and (usu-
ally) overdamped bath DOF representing the immediate
surroundings of the molecule. In this paper, we assume the
correlation function of the energy gap of each molecule in
the aggregate to be the same, and independent of
neighboring molecules, i.e.,

CabðtÞ ¼ CðtÞdab: ð21Þ

The correlation function C(t) is taken in a form of the
overdamped BO model

CðtÞ ¼ �ih� lΛe�Λ tj jsgn t

þ lΛh� coth
bh�Λ
2

� �
e�Λ tj j þ 4Λl

b

�
X1
n¼1

nne�nn tj j

n2n � Λ2 ; ð22Þ

with

nn �
2pn
h�b

; b � 1

kBT
; Λ � 1

tc
: ð23Þ

Here, 1 is the reorganization energy, νn are so-called
Matsubara frequencies, kB is the Boltzmann constant, T is
the thermodynamic temperature and τc is the so-called bath
correlation time. The BO form of the correlation function
satisfies all general constraints put of a correlation function
by thermodynamics [3]. Apart from the temperature which
we assume to be T ¼ 300K in all calculations in this paper,
the BO model is determined by two parameters only; by the
reorganization energy 1 which is experimentally related to
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the Stokes shift S=21 and by the bath correlation time τc.
BO is a widely used, well physically motivated, but not the
only possible model for the bath correlation function.
Implications of other forms of the correlation function for
the RDM dynamics will be studied elsewhere.

Secular and constant relaxation rate approximations
in the energy eigenstate basis

Equations 19 and 20 are systems of coupled (integro-)
differential equations for the elements of the RDM. From
the first terms on the r. h. s. we deduce that the element
ρab(t) oscillates with a frequency close to ωab. It is often
justified to assume that two terms oscillating on different
frequencies are independent of each other. For their
envelopes rabðtÞ ¼ eiwabtrabðtÞ we have

@

@t
rabðtÞ ¼ �

X
cd

RabcdðtÞeiðwab�wcdÞtrcdðtÞ; ð24Þ

and integration over time has therefore a relatively smaller
contribution when ωab–ωcd≠0. Neglecting these contribu-
tions, usually termed secular approximation [27], leads to
setting

RabcdðtÞ ¼ 0; ð25Þ

for all term except when a = c and b = d , or a = b and c =
d. The interpretation of the remaining non-zero terms is
simple. The terms RaabbðtÞ for a ≠ b represent rates of
transition from level denoted by index b to a level denoted
by a. The term RaaaaðtÞ corresponds to the total transition
rate from the level a to all other levels. The terms RababðtÞ
(a ≠ b) are rates of the damping of a coherence element ρab
(t). In secular approximation, the dynamics of populations
of electronic levels is thus decoupled from the dephasing of
coherences. The terms other then population tranfer and
dephasing rates will be refered to as non-secular terms,
here. The processes related to these terms, such as
coherence to coherence transfers, or coherence to popula-
tion transfers, will be refered to as non-secular processes or
coherence transfer processes.

The above arguments for the secular approximation
apply also to the integro-differential Eq. 20, and we can
thus define four different second order EM for the RDM,
with different levels of approximation. From the perspec-
tive of our derivation, the most general second order
equation is Eq. 20, which we have denoted full TNL. The
convolutionless Eq. 19 denoted full TL can be regarded as
its approximation, but it can also be alternatively viewed as
derived by different cummulant approximation, see Refs.
[25, 26]. The set of four methods investigated here is
completed by applying secular approximation to the full
TNL and full TL equations.

All four sets of EM we consider here are extensions to
the two well-known constant relaxation rate theories. To
arrive at the well-known Redfield equations [27], one can
assume certain coarse graining of the RDM dynamics so
that all significant changes to the ρ(t) occur on a time scale
much longer than the correlation time τc. Then time t0 in
Eq. 15 can be put to − ∞ and the integration limits are then
from zero to infinity. The relaxation tensor R thus becomes
time independent. If we, on the other hand, consider the
decay of C(t) to be much faster than even the transition
frequencies between electronic levels, we can assume C(t)
≈ C0δ (t) and Eq. 15 has the well-known Lindblad form [27,
38]. Only for the Lindblad form and for the Redfield
equations in secular approximation, it can be shown that the
diagonal elements of ρ(t) are always positive. For all other
equations we have derived here, this assertion cannot be
proven in general. This is a consequence of the fact that
they are derived in a low order of perturbation theory.

Non-linear spectroscopic signals

Non-linear spectroscopic signals are very well described by
time-dependent perturbation theory [3]. The EM, Eqs. 15 to
16, can be extended by semiclassical light-matter interac-
tion term. This yields

@

@t
rðtÞ ¼ �iLSrðtÞ � D½rðtÞ�ðtÞ þ iVrðtÞEðtÞ; ð26Þ

where E(t) = n · E(t) is the projection of the external electric
field vector E(t) on the normal vector n in direction of the
molecular transition dipole moment. The symbol D[ρ(t)](t)
represents the relaxation term chosen from the full TNL, full
TL, secular TNL or secular TL equations of motion. The
superoperator V is a commutator with the dipole moment
operator μ = nμ, so that for an arbitrary operator A we have

VA ¼ 1

ħ
½m;A� : ð27Þ

Third-order non-linear response theory

Non-linear optical signals are related to the RDM via
polarization

PðtÞ ¼ trfmrðtÞg: ð28Þ

In particular, for the third order non-linear signal Eð3Þ
s ðtÞ

one can write

Eð3Þ
s ðtÞ � iwPð3ÞðtÞ ¼ iw trfmrð3ÞðtÞg; ð29Þ

where the upper index (3) denotes that the quantity is of the
third order of the perturbation theory with respect to the
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external electric field E(t). By defining the evolution
denotes that the quantity is of the third order of the
perturbation theory with respect to the external electric field
E(t). By defining the evolution UðtÞ which fulfills Eq. 26
with E(t) = 0 we can write the third order perturbation term
as

rð3ÞðtÞ ¼ �i

Z1

0

Z1

0

Z1

0

dt3dt2dt1Uðt3ÞVUðt2ÞVUðt1ÞVr0

� Eðt � t3ÞEðt � t3 � t2ÞEðt � t3 � t2 � t1Þ:
ð30Þ

In experiment, the laser field is often prepared in a form of
three incident pulses

EðtÞ ¼ A1ðt � t1Þe�iΩ1ðt�t1Þþik1r þ A2ðt � t2Þe�iΩ2ðt�t2Þþik2r

þA3ðt � t3Þe�iΩ3ðt�t3Þþik3r þ c:c:;

ð31Þ

with different k-vectors k1, k2 and k3. In the rest of the
paper we assume Ω1=Ω2=Ω3≡Ω, A1 (t) = A2 (t) = A3 (t) ≡
A(t). The expression obtained by inserting Eq. 30 into
Eq. 29 can be significantly simplified in cases where the
system consists of a ground-state and a band of excited
states, with the transition frequency close to resonance with
the laser pulse frequency Ω and by assuming the laser
pulses are ultra short, i.e., A(t) ≈ E0δ(t). For an experiment
which detects non-linear signal emitted in the direction −k1
+k2+k3, the third order signal has a frequency ≈ Ω and it is
obtained from just a handful of response functions that
represent certain contributions to the triple commutator in
Eq. 30. The details of the derivation can be obtained, e.g.,
in Ref. [11].

If the delays between the pulses are selected such
that τ denotes the delay between the first (k1) and the
second (k2) pulses, and T denotes the delay between the
second and third (k3) pulse (e.g. t3=0, t2=–T and
t1 ¼ �T � t) we can write for the time and the delay
dependent signal field

Esðt; T ; tÞ � R2gðt; T ; tÞ þ R3gðt; T ; tÞ � R
»

1f ðt; T ; tÞ; tR0;

ð32Þ

Esðt; T ; tÞ � R1gðt; T ; tj jÞ þ R4gðt; T ; tj jÞ � R
»

2f ðt; T ; tj jÞ; t < 0:

ð33Þ

The absolute value in Eq. 33 originates from the fact that
response functions R are defined for positive time argu-
ments only, and negative τ is achieved by switching the
order of the k1 and k2 pulses. The individual response
functions R are listed in Appendix. Most importantly, they
consist of series of propagation of the density matrix blocks

by evolution operators obtained from the solution of EM.
We have, e.g.,

R2gðt; T ; tÞ ¼ tr mgeUegegðtÞVðRÞ
eg UeeeeðTÞV ðLÞ

eg UgegeðtÞV ðRÞ
ge r0

n o
;

ð34Þ

where the evolution superoperators VðRÞ
ab act on an

arbitrary operator A as a dipole operator μab from the
right, i.e., VðRÞ

ab A ¼ Amab. The superoperator VðLÞ
ab is

defined analogically with the action of μab from the left.
The indices e and g denote electronic bands as denoted in
Fig. 1. Thus, the above operators and the action of
superoperators on an arbitrary operator A are expressed
in the basis of Hamiltonian eigenstates as

r0 gj i gh j; ð35Þ

meg ¼
X
n

mðegÞ
ng unj i gh j; ð36Þ

UegegðtÞ½A� ¼
X
nm

U ðgegeÞ
gngm ðtÞ um Aj jgh i gj i unjh ; ð37Þ

UegegðtÞ½A� ¼
X
nn0mm0

U ðgegeÞ
nn0mm0 ðtÞ um0h jA umj i unj i un0h j: ð38Þ

Equations 35–38 together with Appendix enable us to
calculate expected nonlinear signal from the knowledge of
the matrix elements of the evolution superoperator. This
type of knowledge can be obtained from solutions of the
four different EM that we presented in ‘Second order
relaxation theories section’.

Two-dimensional coherent spectroscopy

Two-dimensional coherent spectrum, Ξ (ωt, T, ωτ), is
obtained from the non-linear signal by Fourier transforming
the time and pulse delay dependent signal electric field ES(t,
T, τ) along the t and τ variables [8, 11] as

Ξðwt; T ; wtÞ ¼
Z1

�1

dt

Z1

�1

dtEsðt; T ; tÞeiwt t�iwt t: ð39Þ

The Fourier transform in τ yields an wt dependence that
is formally similar to linear absorption spectrum, while the
transform in t yields generalized absorption and stimulated
emission from a non-equilibrium state created by the first
two laser pulses. 2D spectrum thus represents a 2D
absorption/emission and absorption/absorption correlation
plot. During the pulse delay time T the system evolves both
in the electronically excited state and in the ground state,
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but no optical signal is generated. Relaxation of populations in
the electronically excited band leads to evolution of non-
diagonal 2D spectral features, so-called cross-peaks. Cross-
peaks appearing at T=0 are a signature of excitonic origin of
the observed excited states. The 2D cross-peaks oscillate in T
as long as the corresponding electronic coherence elements
of the reduced density matrix are oscillating. The life time of
the electronic coherences can thus be estimated directly from
the T dependent sequence of 2D spectra [12, 14].

Numerical results and discussion

In this section we study dynamics of model aggregate
viewed via population and coherence dynamics and via 2D
coherent spectrum. We define a simple model aggregate for
which we calculate excited state dynamics including
evolution of coherences between electronic states, linear
absorption and 2D spectra at chosen population times.
Calculations of linear absorption, which require only
knowledge of the time evolution of optical coherences,
are performed using the secular time local equation, since it
is known to yield exact result at least for some models [35].
Population dynamics is calculated using all four methods
we discussed in ‘Second order relaxation theories section’,
and the results are compared.

The simplest model of an aggregate that can exhibit all
effects observed in Ref. [14] is a trimer. The geometry of
the studied models, together with the meaning of the
parameters is presented in Fig. 2. In Table 1 we summarize

the main parameters of the model. Because we are not
interested in the absolute amplitude of the absorption or 2D
spectra we assume the transition dipole moments dn to be
taken relative to some value d0. All three resonance
couplings J between the molecules are set to J=200 cm−1

for the calculations presented here.
The values of the transition dipole moments, together

with the exciting light intensity, determine the initial
condition for the population dynamics. We assume that
the excitation light intensity and the value of the transition
dipole moment are such that the system is only weakly
excited. The total population of the excited state band is
normalized to 0.01. The relative values of the transition
dipole moments are chosen so that the linear absorption
spectrum (see Fig. 3) shows peaks of roughly the same
height. Two peaks originating from the energetically lowest
and the energetically highest states dominate the spectrum,
the third level contributes as a shoulder to lowest energy
peak.

Two parameters that influence the coupling for the
model system to the bath are reorganization energy λ and
correlation time τc. We vary these parameters in the range
that can conceivably represent chlorophylls in photosyn-
thetic complexes (see, e. g., Refs. [39, 40]).

Fig. 2 Geometry and parameters of a trimer aggregate. One monomer
is chosen to be positioned at the origin of the coordinate system, with
the transition dipole moment pointing along the x axis. The positions
of the transition dipole moments of the other two molecules in space
are characterized by their distance h2 and h3 from the origin of
coordinates and by the angles α2 and α3. Orientations and lengths of
the dipoles are given in Table 1. In our example we assume that the
aggregate is planar

Table 1 Parameters of the model trimer. The parameter 2n represents
the transition energy of nth monomer, transition dipole moments dn
are taken relative to some value d0. Parameters hn and αn are
explained in Fig. 2

n "n
cm�1

dn ;x
dnj j

dn ;y
dnj j

dn ;z
dnj j

dnj j
d0 hn

an
grad

1 9850 1 0 0 0.65 0 0

2 10000 –0.94 0.34 0 2.15 10 60

3 10150 –0.94 0.34 0 0.9 10 120

Fig. 3 Linear absorption spectrum of the model trimer for various
parameters of the system bath interaction: (a) λ=120 cm−1, τc=50 fs,
(b) λ=30 cm−1, τc=100 fs, calculated by the secular TL theory (full
lines) and the secular TNL theory (dashed lines)
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Population relaxation and evolution of coherences

First, we compare relaxation dynamics of populations of the
excited state of our aggregate after excitation by an
ultrashort laser pulse. TL equations of motion where solved
by standard numerical methods for ordinary differential
equations provided by the Mathematica® software. For the
TNL equations we used fast Fourier transform method.
Figure 4 presents the first 1 ps of the population dynamics
after a δ−pulse excitation of the trimer from Table 1 at the
temperature T ¼ 300K. Reorganization energy 1=
120 cm−1 and correlation time τc=50 fs are the same at
all three monomers. The dynamics with the same param-
eters for a selected coherences element ρ13(t) is presented in
Fig. 5. The overall conclusion is that all four methods yield
a similar general behavior for the populations, with some
difference at the short time evolution and also slightly
different long time equilibrium. Examination of Fig. 5 leads
us to the conclusion that the methods yield two different
results - a short coherence life time for the time local
methods, and a relatively longer life time in case of the time
non-local methods. The behavior of the coherence ρ13(t)
represents a general tendency that we have observed for all
electronic coherences over a wide range of parameters.

Let us now concentrate on short time behavior of the
populations and coherences in more detail. In the short time
evolution of the coherences the four methods group into
two distinct groups with short (TL methods) and long (TNL
methods) coherence life time. Whether the underlying
equation is secular or not seems to have only a little
influence on the coherence dynamics. Figure 6 shows the
short time (0–400 fs) comparison of the population

Fig. 4 First 1000 fs of the excited state population dynamics of a
trimer with parameters λ=120 cm−1, τc=50 fs, calculated by all four
methods. For these particular parameters, the full TL equation breaks
positivity of the RDM diagonal elements after 200 fs. Its prediction for
the populations of the lowest and highest levels is significantly
different from the other three methods

Fig. 5 First 500 fs of the dynamics of the RDM coherence element
ρ13(t), with parameters from Fig. 4, calculated by all four methods.
Detail of the long time part of the time evolution is presented in the
inset
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Fig. 6 First 400 fs of the population dynamics of the trimer with
parameters λ=30 cm−1 and τc=50 fs. Results of full TL and TNL
theories are presented in upper subfigure (a), the secular results are
found in the lower subfigure (b). In both figures, magenta lines
represent population dynamics calculated by constant rate Redfield
theory
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calculated by the four EM. In addition, short time
population dynamics calculated by constant rate secular
and non-secular Redfield equations are presented. We can
clearly see that the results can be naturally grouped
according to the presence of fast oscillatory modulation of
the population relaxation dynamics. In the one group we
have the full TL and full TNL methods, where such
oscillations clearly occur, the second group comprises the
two secular methods with no oscillations present. Thus, it
can be concluded that the non-secular terms in the EM,
which represent the coherence transfer and transfer between
populations and coherences, are the cause of these
oscillations. This is also supported by comparison of the
population dynamics of the full TL and full TNL equations
from Fig. 4 (e.g., the population of the state 1). The
oscillation on the full TNL curve lasts longer than those of
the full TL one, which reflects the longer coherence life
time we have found for the TNL equations. In comparison
to the four time dependent theories, the calculation with
constant rates yields completely different dynamics at short
times. This is consistent with the idea of the slipage of
initial conditions [41] during the interval roughly
corresponding to the length of bath correlation time.

Let us now discuss the long time limit of the time
evolution. As expected, the two secular theories yield the
same equilibrium at long population times. This equilibri-
um corresponds to the canonical distribution of population
among the excitonic levels at T ¼ 300K. In both secular
TNL and secular TL cases, coherences have relaxed to zero
at long times as the inset of Fig. 5 demonstrates. The non-
secular TNL and TL equations yield non-zero, stationary
coherences at long times, and correspondingly, the long
time equilibrium populations do not correspond to the
canonical thermal equilibrium. Although both non-secular
theories converge to results different from the canonical
equilibrium, the full TNL equation yields populations that
are physical at all times for the studied system parameters,
i.e., they are always positive. The full TL equation on the
other hand fails to keep probabilities positive at long times,
and the occupation probability of the highest electronic
level becomes negative after 200 fs for the parameters used
on Fig. 4. In light of recent experiments [14], the
conclusion that time non-local theories lead to a longer
coherence life time than the time-local ones (i.e., also
longer than the standard constant rate theories) is probably
the most interesting. We have performed calculations of the
RDM dynamics while varying the reorganization energy
and the correlation time. The absolute values of the
coherence ρ13(t) elements were fitted by a single exponen-
tial to estimate coherence life-time. The results are
summarized in Fig. 7. Figure 7a shows the results for
secular TL and secular TNL equations. Clearly, with
growing correlation time τc, the full TNL equations lead

to an increasing coherence life time. The full TL equation
shows only a very weak dependence of the coherence life
time on correlation time. Another interesting observation is
that for correlation time longer then 50 fs, the dependence
of the coherence life time on the reorganization energy λ is
different for full TNL and TL methods. Time local theory,
in accordance with the standard rate theories, predicts a
decrease of the coherence life time with λ. The full TNL
theory predicts (within the parameter range studied here) an
opposite tendency. Figure 7b shows similar conclusion for
the non-secular versions of the theories, with the same
difference between TL and TNL theory. The dependence of
the coherence life time on λ in the case of TNL equations is
not monotonous.

Two-dimensional spectrum

As discussed in the Introduction, the secular TL equation of
motion yields an exact result for the dephasing of an
isolated optical coherence [35]. One can show, by compa-
rison of the absorption spectra calculated by secular TL and

a

b

Fig. 7 The life time of coherence ρ13(t) as obtained from fitting the
coherence dynamics calculated by all four methods for various
parameters λ and τc. The upper subfigure (a) shows the life times
obtained by the secular methods, while the lower subfigure (b)
presents the same for non-secular methods
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TNL methods (see Fig. 3), that the TNL theory leads to
certain artifacts (second peak) and is therefore not suitable
for the description of the optical coherence evolution.
Consequently, by the TL theories one can hope to obtain
valid results only for the evolution superoperators at the
first and the third time interval of the third order response
functions by the TL theories. In Ref. [42] it was shown that
non-secular terms in the TL equations for optical coher-
ences lead to temperature dependence of the positions of
excitonic bands in absorption spectra. This dependence was
shown to be strong when the electronic states involved are
characterized by significantly different reorganization ener-
gy [34, 42]. Indeed it can be shown for homodimer that the
non-secular terms are exactly zero in second order TL
theory if the monomers exhibit the same reorganization
energies [34]. We can therefore expect the non-secular
effects in the optical coherences to be weak in our case, and
we choose secular TL to calculate the evolution super-
operators in the first and the third time interval of the
response function, Eq. 34.

Concerning the population interval, the situation is
somewhat different. As we have shown above, the non-
secular TL theory leads to dynamics that breaks the
positivity condition for the population probabilities at long
times. At the same time, short time dynamics is very similar
to the full TNL. Both theories predict population oscil-
lations during the life time of the electronic coherences. The
full TNL equation, however, preserves positivity, at least
for the parameters studied here, and can be therefore used
to calculate meaningful 2D spectra. For the same reason,
both secular theories can also be successfully used to
calculate 2D spectrum. As the oscillation of the populations
predicted by non-secular theories are too small to be
reliably observed in 2D spectrum (only a small change of
the crosspeak amplitude due to the population transfer is
observed after 140 fs of relaxation in 2D spectrum of
Fig. 8) we expect only a small difference of the 2D
spectrum to appear between the secular and full TNL
theories. For the calculation of the representative 2D
spectrum we therefore choose the secular TL and the full
TNL theories. These two differ from each other mainly in
the prediction of the life time of the electronic coherences.
The observable difference in the calculated 2D spectra
should therefore predominantly result from the different life
times of the electronic coherence.

Figure 8 presents 2D spectra for λ=30 cm−1 and τc=
100 fs. These parameters lead to a rather slow relaxation
and consequently to narrow spectral peaks in both
absorption (see Fig. 3) and 2D spectra. This allows us to
clearly see characteristic T−dependent oscillations of the
peaks in 2D spectrum. At T=0 fs, both methods provide the
same 2D spectrum, with four peaks. Two diagonal peaks
arise when all three perturbations of the system by electric

field occur on the same level, while two crosspeaks appear
from interactions occurring on different levels. Negative
peaks correspond to excited state absorption (see Fig. 1).
For two molecules that are not excitonically coupled, all
contributions to the crosspeaks cancel out exactly, while if
two molecules are excitonically coupled non-zero cross-
peaks appear. The shapes of the peaks are influenced by the
phase evolution of the coherence elements of RDM during
the population time T. On the upper left figure of Fig. 8 we
have marked the elongation of the diagonal and off-
diagonal peaks by arrows. The elongation can be best
judged by looking at the zero contour (in black). This
particular elongation is characteristic for the phase of the
ρ13(t) element (see upper right figure of Fig. 8) at T=0. At
T=20 fs the phases of the ρ13(t) calculated by both methods
are opposite to the phase at T=0. The 2D spectra calculated
by the two different methods at T=20 fs differ only in the
precise positions of the contours. This phase of the
coherence element is characterized in 2D spectrum by a
different orientation of the peaks. Interestingly, at T=140 fs
the two methods predict ρ13(t) that have mutually opposite
phases and as a consequence the 2D spectra at T=140 fs
calculated by different methods differ in the orientation of
their crosspeaks. Since the secular TL theory predicts a
simple dephasing of the coherence and a regular oscillation
with a single frequency proportional to the energy
difference between corresponding energy levels, it is in
principle possible to distinguish, even experimentally,
deviations from this prediction. Our conclusion is that such
a deviation should be a consequence of the memory effects
in the reduced system time evolution.

Validity of secular and Markov approximations

Several conclusions about the applicability of the secular and
Markov approximations can be drawn from the above results.
As pointed out in Ref. [35], Markov approximation, which in
the second order in system-bath coupling converts the TNL
equations to the TL ones, leads accidentally to an exact result
for an optical coherence element interacting with the
harmonic bath. It has also been pointed out previously [33,
43] that in the same case, the TNL equations lead to artifacts.
When studying relaxation dynamics of the populations and
electronic coherences in excitonic systems, full TL theory
leads to a breakdown of the positivity of the RDM, while
none of the secular theories suffer from this problem. In
principle, the full TNL theory suffers from this problem, too
[44]. However, it has been found less susceptible to it here.
The secular theories lead to canonical density matrix at long
times, while the full TNL results in a stationary state
characterized by non-zero (but constant) coherences. Such
result corresponds to an additional renormalization of the
electronic states by the interaction with bath, and has to be
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expected even at a weak coupling limit [45]. It is important
to note in this context that the canonical equilibrium is to be
expected for the system consisting of the molecule and the
bath as a whole, not for its parts [45].

For the population dynamics we are therefore forced to
conclude that the full TNL theory represents the best
candidate for a correct description of relaxation phenomena
in the second order of the system bath interaction. It predicts
similar population transfer times as other methods, it is much
less sensitive to the breakdown of the positivity than its TL

counterpart, and it leads to a bath renormalization of the
canonical equilibrium. Most interestingly however, it predicts
longer coherence life time than the TL theory. It was recently
established by Ishizaki and Fleming [33] that this is to be
expected from a higher order theory.

In light of the above conclusions about the dynamics of
optical coherences and the populations and coherences of the
one exciton band, we suggest a hybrid approach to calculating
2D spectra, which consists of the application of the TLmethod
on optical coherences (first and third time interval) and the full

T = 0 fs

T = 20 fs T = 20 fs

T = 140 fs T = 140 fs

Fig. 8 Two-dimensional coher-
ent spectra of the trimer model
at population times T=0, 20 and
140 fs calculated by the secular
TL method (left column) and the
full TNL method (right column).
The system-bath interaction
parameters are λ=30 cm−1 and
τc=100 fs. The coherence ele-
ment ρ13(t), which is mainly
responsible for the oscillatory
behavior of the crosspeaks, is
presented in the upper right
corner of the figure. The 2D
spectrum at T=0 fs is the same
for both methods and is there-
fore presented only once. The
population times are selected so
that they represent different
phases of the ρ13(t) element
(denoted by arrows on the co-
herence element figure). Arrows
in the 2D spectra denote the
orientation of the peaks. All
spectra are normalized to 1 with
contour step of 10%. Positive
features are in full red line,
negative features are represented
by dashed blue line, and the zero
contour is depicted by the full
black line
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TNL method on the calculation of the RDM dynamics in the
one exciton band during the population time T.

Conclusions

In this paper we have compared four different theories of
excitation energy transfer and relaxation in molecular
aggregate systems, with special attention paid to lifetime
of electronic coherences. Second order time non-local and
time local theories with and without secular approximation
were studied. For our specific model of an aggregate we
have concluded that time non-local theories can account for
experimentally observed electronic coherence life time that
is significantly longer than the one predicted by the
standard time-local secular relaxation rate theory. Markov
approximation leading to time local EM was found to be
responsible for the reduction of the coherence lifetime,
while the influence of the secular approximation on the life
time was found rather weak. The time local theory without
secular approximation is found to break positivity of the
occupation probabilities in the range of parameters studied
here. We conclude that time-local second order theory is not
suitable for simulating the coherence transfer effects.
Simulations of two-dimensional spectra show that the time
non-local effects 23 can be experimentally identified based
on the analysis of the oscillations of the cross peaks.
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Appendix

A third order response functions

In this appendix we list the third order response function
used in calculating the impulsive 2D spectra. The first
index of the response function follows the standard notation
of Ref. [3]. The second index is g for pathways not
involving the two-exciton band, while all pathways denoted
by f include a two-exciton contribution (see, e.g., Ref. [11]).

R1g t; T ; tð Þ ¼ tr mgeUegegðtÞVðRÞ
eg UeeeeðTÞVðRÞ

ge Uegeg tð ÞVðLÞ
eg r0

n o
;

ð40Þ

R2g t; T ; tð Þ ¼ tr mgeUegegðtÞVðRÞ
eg UeeeeðTÞVðLÞ

eg Ugege tð ÞVðRÞ
ge r0

n o
;

ð41Þ

R3g t; T ; tð Þ ¼ tr mgeUegegðtÞVðLÞ
eg UggggðTÞVðRÞ

eg Ugege tð ÞVðRÞ
ge r0

n o
;

ð42Þ

R4g t; T ; tð Þ ¼ tr mgeUegegðtÞVðLÞ
eg UggggðTÞVðLÞ

ge Uegeg tð ÞVðLÞ
eg r0

n o
;

ð43Þ

R1f t; T ; tð Þ ¼ tr mfeUefef ðtÞVðRÞ
ef UeeeeðTÞVðRÞ

gf Uegeg tð ÞVðLÞ
eg r0

n o

ð44Þ

R2f t; T ; tð Þ ¼ tr mfeUefef ðtÞVðRÞ
ef UeeeeðTÞVðLÞ

eg Ugege tð ÞVðRÞ
ge r0

n o
:

ð45Þ

Operators and superoperators used in this appendix are
defined in ‘Third-order non-linear response theory section’.
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